CPA Policy

Addition - Y1

Objective and Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part-whole model	Use part-part whole model. Use cubes to add two numbers together as a group or in a bar. \square 0.0000000 10 \square \square	Use pictures to add two numbers together as a group or in a bar	Use the part-part whole diagram as shown below to move into the abstract. $\begin{aligned} & 9=6+3 \\ & 3+6=9 \end{aligned}$
Regrouping to make 10 . This is an essential skill for column addition later.	Start with the bigger number and use the smaller number to make 10. - Use ten frames. $6+5=11$	Use pictures or a number line. Regroup or partition the smaller number using the partpart whole model to make 10 . $9+5=14$ 194	$7+4=?$ If I am at seven, how many more do I need to make 10 (add 3). How many more do I add on now (add the 1)? (partition the 4 to 'make 10')
Represent \& use number bonds and related subtraction facts within 20	Use cubes and other concrete objects (bead strings optional) 2 more than 5	คि०	Emphasis should be on the language: ' 2 more than 5 is 7 .' ' 7 is 2 more than 5.'

Addition - Y2

Objective and Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten	$50=30+20$	Use representations for base ten.	$\begin{aligned} & 20+30=- \\ & -=50+20 \\ & 40+\ldots=60 \end{aligned}$
Use known number facts Part-part whole, bar model and dienes	Children explore ways of making numbers within 20/100		$\begin{array}{rlr} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \\ 3+4=7 & & \end{array}$ leads to $30+40=70$
Add a two digit number and ones	 $17+5=22$ - Use ten frame to 'make ten' Children then explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part-whole model to represent this: $17+5=22$ 3 2 20	$17+5=22$ Explore related facts $\begin{aligned} & 17+5=22 \\ & \cline { 2 - 3 } \\ & \cline { 2 - 3 } \\ & \cline { 2 - 3 } \\ & 22-17 \end{aligned} \quad$
Add a 2 digit number and tens	$25+10=35$ Explore that the ones digit does not change	Draw the dienes and explore on a number square \qquad	Explore patterns: $\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\ldots=57 \end{aligned}$

Add two 2-digit numbers	Model using dienes, place value counters and numicon H\| Model 'make 10 ' and 'same value swap' if ones bridge 10 (exchange).	Draw the dienes $\\|: \ddot{i}+\\|\|\|10:=\\|\|\|\|\|\| \|:$ Make 10 and do a 'same value swap' 10 ones $=1$ ten	See calculation policy Expanded column method using 2 digit numbers
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	Combine the two numbers that makel bridge ten then add on the third. $\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$

Addition - Y3

Addition - Y4

Objective and Strategy	Concrete			Pictorial				Abstract						
Y4-add numbers with up to 4 digits	Children continue to use dienes or PV counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.			Draw representations using pv grid.				See calculation policy						
				- -	88	\because	$\because 0$							
Column method		$\frac{\text { Tens }}{10 \\| 000}$			$\because \bullet$		$\because \because$							
	\square	\|							-.....	7	1	5	1	
				-		-								

